Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Experiments on pavement performance of solidified sediment modified with cement
ZHANG Jun feng1, DAI Xiao song2, ZOU Wei lie3, XU Shun ping2, LI Zi you4
1. Country Garden Holdings Company Limited, Shunde 528311, China, 2. Investment development Company LimitedCCTEB, Wuhan 430070, China; 3. College of Civil Engineering, Wuhan University, Wuhan 430072, China; 4. Central Southern Geotechinical Design Institute Company Limited, Wuhan 430072
Download:   PDF(1458KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A kind of complex Portland cement (PC32.5) was used to modify the pavement performances of dredged sludge from East Lake of Wuhan  combined with the technology of integrated approach for dehydrated consolidation of desilting slurry. A serious of laboratory tests were conducted to investigate the influence of the degree of compaction, cement content and curing period on the deformation behavior of strength, compressibility and water stability of modified solidified sediment (MSS). Results indicate that the optimum water content and maximum dry density of the MSS are a little less than those of the SS. California Bearing Ratio (CBR), unconfined compression strength (qu), and compression coefficient (a1-2) of the MSS have obviously increment in the first 7 days of curing period, thereafter CBR and qu continue to increase, but their amplifications gradually decrease. The influences behavior of cement content on both CBR and qu exist the inflection point phenomena, i.e., the rates of increase of both CBR and qu are less after the cement contents exceed their own inflection points (4% and 2%, respectively). The compression coefficient of MSS was independent on curing period and cement content. Both degree of compaction and cement content can slightly improved the water stability of MSS, and extending the curing period of MSS showed more effective improvement. Scanning electronic mission (SEM) pictures of SS and MSS were  adopted to explain the mechanism of cement improving pavement performance  of  SS.



Published: 01 November 2015
CLC:  TU 443  
Cite this article:

ZHANG Jun feng, DAI Xiao song, ZOU Wei lie, XU Shun ping, LI Zi you. Experiments on pavement performance of solidified sediment modified with cement. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(11): 2165-2171.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008 973X.2015.11.018     OR     http://www.zjujournals.com/eng/Y2015/V49/I11/2165


水泥改性固化脱水淤泥路用性能试验

针对无法用作路基填料的对武汉东湖疏浚淤泥,结合专利技术“清淤泥浆脱水固结一体化处理方法”,采用PC32.5复合硅酸盐水泥进行改性处理.考虑压实度、水泥掺量、养护龄期等主要影响因素,通过一系列室内试验,研究水泥改性固化土强度、压缩性和水稳定性随影响因素的变化规律.试验结果表明,改性固化土的最优含水率和最大干密度较固化土稍有降低,加州承载比(CBR)、无侧限抗压强度qu、压缩系数a1-2在养护初期(7 d)较固化土已有显著的增加,随着养护龄期的延长,CBR、无侧限抗压强度继续增大,但增幅逐渐减小;水泥掺量对CBR、无侧限抗压强度的影响都存在明显的拐点(分别为4%和2%),超过拐点后,各指标的增长率较小;养护龄期、水泥掺量的增加并不能引起压缩系数a1-2的明显降低;提高压实度和水泥掺量对改性固化土的水稳定性均有改善作用,但经济性差,而延长养护龄期有更明显的效果.结合扫描电镜图像,对水泥改善固化土性能的机理进行分析.

[1] 白玉恒. 粉煤灰固化淤泥路用性能及填筑技术研究[D]. 上海:上海交通大学, 2009: 12.
BAI Yu huan. Study on road performance and filling technology of solidified muddy soil by fly ash [D]. Shanghai: Shanghai Jiao Tong University, 2009: 12.
[2] 王东星,徐卫亚. 大掺量粉煤灰淤泥固化土的强度与耐久性研究[J]. 岩土力学, 2012, 33(12): 3659-3664.
WANG Dong xing, XU Wei ya. Research on strength and durability of sediments solidified with high volume fly ash [J]. Rock and Soil Mechanics, 2012, 33(12): 3659-3664.
[3] 姬凤玲,朱伟,张春雷. 疏浚淤泥的土工材料化处理技术的试验与探讨[J]. 岩土力学, 2004, 25(12): 1999-2002.
XI Feng ling, ZHU Wei, ZHANG Chun lei. Study of treatment technology of dredging sludge with geosynthetizing method [J]. Rock and Soil Mechanics, 2004, 25(12): 1999-2002.
[4] KANIRAJ S R, HAVANAGI V G. Compressive strength of cement stabilized fly ash soil mixtures [J]. Cement and Concrete Research, 1999, 29(5): 673-677.
[5] 黄英豪,朱伟,张春雷,等. 固化淤泥重塑土力学性质及其强度来源[J]. 岩土力学, 2009, 30(05): 1352-1356.
HUANG Ying hao, ZHU Wei, ZHANG Chun lei, et al. Mechanical characteristics and strength source of remolded solidified dredged material [J]. Rock and Soil Mechanics, 2009, 30(05): 1352-1356.
[6] 黄英豪,董婵,关云飞,等. 击实对固化淤泥物理力学性质的影响[J]. 岩土工程学报, 2012, 34(09): 1728-1733.
HUANG Ying hao, DONG Chan, GUAN Yun fei, et al. Effect of compaction on physical and mechanical properties of solidified dredged materials [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(09): 1728-1733.
[7] 黄英豪,朱伟,周宣兆,等. 固化淤泥压缩特性的试验研究[J]. 岩土力学, 2012, 33(2): 2923-2928.
HUANG Ying hao, ZHU Wei, ZHOU Xuan zhao, et al. Experimental study of compressibility behavior of solidified dredged material [J]. Rock and Soil Mechanics, 33(2): 2923-2928.
[8] 朱伟,冯志超,张春雷,等. 疏浚泥固化处理进行填海工程的现场试验研究[J]. 中国港湾建设, 2005, 139(05): 32-35.
ZHU Wei, FENG Zhi chao, ZHANG Chun lei, et al. Field experiment of dredged spoil solidified with cement for marine reclamation works [J]. China Harbour Engineering, 2005, 139(05): 32-35.
[9] 刘仁钊. 基于不同固化剂作用下淤泥改良前后力学性能变化研究[D]. 广东工业大学, 2013.
LIU Ren zhao. Based on the effect of different curing agents and the change of mechanical properties of sludge improved research [D]. Guangzhou: Guangdong University of Technology, 2013.
[10] BAHAR R, BENAZZOUG M, KENAI S. Performance of compacted cement stabilized soil[J]. Cement and Concrete Composites, 2004, 26(7): 811-820.
[11] 耿树泽,侯明业,赵娟娟,等. HSC301化淤泥填筑路基性能研究[J]. 筑路机械与施工机械化, 2013, (06): 49-51.
GENG Shu ze, HOU Ming ye, ZHAO Juan juan, el al. Study on performance of subgrade built with HSC301 solidified silt [J]. Road Construction and Machinery, 2013, (06): 49-51.
[12] 孟庆山,杨超,雷学文,等. 武汉东湖淤泥早强固化试验研究[J]. 岩土力学, 2010, 31(03): 707-712.
MENG Qing shan, YANG Chao, LEI Xue wen, et al. Experimental study of early solidification of sludge in East Lake, Wuhan [J]. Rock and Soil Mechanics, 2010, 31(03): 707-712.
[13] 陈士强,季光明,杨国录,等. 清淤泥浆脱水固结一体化处理方法: 中国, CN 101746942 B[P] 2010 06 23.
CHEN Shi qiang, JI Guang ming, YANG Guo lu, et al. Integrated approach for dehydrated consolidation of desilting slurry. China CN 101746942 B [P]. 2010 06 23.
[14] JTG E40 2007.公路土工试验规程[S]. 北京: 人民交通出版社, 2007.
JTG E40 2007. The Methods of Soils for Highway Engineering[S]. Beijing: China communications Press, 2007.
[15] CJJ1   2008. 城镇道路工程施工与质量验收规范[S]. 北京: 中国建筑工业出版社, 2008.
CJJ1   2008. Code for construction and quality acceptance of road works in city and town[S]. Beijing: China Architecture & Building Press, 2008.
[16] JTG D30   2004.公路路基设计规范[S]. 北京: 人民交通出版社, 2004.
JTG D30 2004 Specifications for Design of Highway Subgrades [S]. Beijing: China communications Press, 2004.
[17] JTG F10 2006.公路路基施工技术规范[S]. 北京: 人民交通出版社, 2006 .
JTG F10 2006. Technical specification for construction of highway subgrades [S]. Beijing: China communications Press, 2006.
[18] 黄新,周国钧. 水泥加固土硬化机理初探[J]. 岩土工程学报, 1994, 16(01): 62-68.
HUANG Xin, ZHOU Guo jun. Harding mechanism of cement stabilized soil [J]. Chinese Journal of Geotechnical Engineering, 1994, 16(01): 62-68.

[1] YANG Guo lin, DUAN Jun yi, YANG Xiao, XU Ya bin. Vibration characteristics of subgrade in expansive soil area under simulated rainfall and natural conditions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2319-2327.
[2] LIN Cheng xiang, LING Dao sheng, ZHONG Shi ying. Application of particle flow code numerical simulation in research of geotechnical behavior of lunar soil[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1679-1691.
[3] HU Ping-chuan, ZHOU Jian, WEN Xiao-gui, CHEN Yu-xiang, LI Yi-wen. Laboratory model experiment of electro-osmosis combined with loading and pneumatic fracturing[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1434-1440.
[4] TAO Yan-li, ZHOU Jian, GONG Xiao-nan. Experimental study on function mechanism of electrode materials upon electro-osmotic process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(9): 1618-1623.
[5] HUANG Bo, LI Ling, LING Dao-sheng, CHEN Xing-yao. Modes of additional attenuation of Gmax and its influence on seismic site response[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1170-1179.
[6] CHEN Ren-peng, LIU Yuan, LIU Sheng-xiang, TANG Lv-jun. Characteristics of upward moving for lining during shield tunnelling construction[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(6): 1068-1074.
[7] GUO Lin, CAI Yuan-qiang, GU Chuan, WANG Jun. Resilient and permanent strain behavior of soft clay under cyclic loading[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(12): 2111-2117.
[8] LIANG Meng-gen, LIANG Tian, CHEN Yun-min. Centrifuge shaking table modeling of liquefaction characteristics of free field[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(10): 1805-1814.
[9] HAN Tong-chun, DOU Hong-qiang, MA Shi-guo, WANG Fu-jian. Rainwater redistribution on stability of homogenous infinite slope[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(10): 1824-1829.
[10] CHEN Zhuo , ZHOU Jian, WEN Xiao-gui,TAO Yan-li. Experimental research on effect of polarity reversal to electro-osmotic[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(9): 1579-1584.
[11] WU Yong, PEI Xiang-jun, HE Si-ming, LI Xin-po. Hydraulic mechanism of gully bed erosion by debris flow in rainfall[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(9): 1585-1592.
[12] CAI Yuan-qiang,LIU Xin-feng,GUO Lin,SUN Hong-lei,CAO Zhi-gang. Long-term settlement of surcharge preloading foundation in soft clay area induced by aircraft loads[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(7): 1157-1163.
[13] NIU Hui, WANG Jin-feng, ZHANG Yi-ping, ZHANG Zhi-cheng, YU Ya-nan. Study of incremental launching of space-curved butterfly-arch bridge[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(7): 1205-1212.
[14] WU Shi-ming, WANG Zhan, WANG Li-zhong. Monitoring and analysis of force and deformation of large section crossing-river tunnel during operation period[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(4): 595-601.
[15] WU You-xia, WANG Zhan, ZHONG Run-hui2, LI Ling-ling, FENG Zhi-hong, WANG Qi. Analysis of interaction between dust break wall piles and soil
subjected to coal loading in soft foundation
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(3): 502-507.